An interior-point approach for primal block-angular problems
نویسنده
چکیده
Multicommodity flows belong to the class of primal block-angular problems. An efficient interior-point method has already been developed for linear and quadratic network optimization problems. It solved normal equations, using sparse Cholesky factorizations for diagonal blocks, and a preconditioned conjugate gradient for linking constraints. In this work we extend this procedure, showing that the preconditioner initially developed for multicommodity flows applies to any primal block-angular problem, although its efficiency depends on each particular linking constraints structure. We discuss the conditions under which the preconditioner is effective. The procedure is implemented in a user-friendly package in the MATLAB environment. Computational results are reported for four primal blockangular problems: multicommodity flows, nonoriented multicommodity flows, minimum-distance controlled tabular adjustment for statistical data protection, and the minimum congestion problem. The results show that this procedure holds great potential for solving large primal-block angular problems efficiently.
منابع مشابه
Quadratic regularizations in an interior-point method for primal block-angular problems
One of the most efficient interior-point methods for some classes of primal block-angular problems solves the normal equations by a combination of Cholesky factorizations and preconditioned conjugate gradient for, respectively, the block and linking constraints. Its efficiency depends on the spectral radius—in [0,1)— of a certain matrix in the definition of the preconditioner. Spectral radius c...
متن کاملImproving an interior-point approach for large block-angular problems by hybrid preconditioners
The computational time required by interior-point methods is often dominated by the solution of linear systems of equations. An efficient specialized interior-point algorithm for primal block-angular problems has been used to solve these systems by combining Cholesky factorizations for the block constraints and a conjugate gradient based on a power series preconditioner for the linking constrai...
متن کاملSolving L1-CTA in 3D tables by an interior-point method for primal block-angular problems
The purpose of the field of statistical disclosure control is to avoid that no confidential information can be derived from statistical data released by, mainly, national statistical agencies. Controlled tabular adjustment (CTA) is an emerging technique for the protection of statistical tabular data. Given a table to be protected, CTA looks for the closest safe table. In this work we focus on C...
متن کاملABS Solution of equations of second kind and application to the primal-dual interior point method for linear programming
Abstract We consider an application of the ABS procedure to the linear systems arising from the primal-dual interior point methods where Newton method is used to compute path to the solution. When approaching the solution the linear system, which has the form of normal equations of the second kind, becomes more and more ill conditioned. We show how the use of the Huang algorithm in the ABS cl...
متن کاملAn Interior Point Algorithm for Solving Convex Quadratic Semidefinite Optimization Problems Using a New Kernel Function
In this paper, we consider convex quadratic semidefinite optimization problems and provide a primal-dual Interior Point Method (IPM) based on a new kernel function with a trigonometric barrier term. Iteration complexity of the algorithm is analyzed using some easy to check and mild conditions. Although our proposed kernel function is neither a Self-Regular (SR) fun...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Comp. Opt. and Appl.
دوره 36 شماره
صفحات -
تاریخ انتشار 2007